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Appendix A: Proofs 

Before proving Proposition 1 we have to properly define the three types of social preferences that 

we consider. 

(i) Altruism (utilitarianism): A decision maker is utilitarian if her utility function is strictly 

increasing in ( )X Y Cm m m+ + , i.e., 0
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(ii) Maximin preferences: The decision maker has maximin preferences if 

{ }CYXDMDMDM mmmmmU ,,,min)1( ⋅+⋅−= λλ , 

where 0 1< λ < . Thus, if mDM is unaffected by DM’s decision, she maximizes the payoff of 

the player who is worst off in the group.1  

(iii) Inequality aversion: The decision maker is inequality averse if she wants to minimize the 

payoff differences between her own payoff and the payoffs of each of the other players (Fehr 

and Schmidt, 1999), i.e.,  
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βα  with { , , }j X Y C∈ , 

where 0 β α< ≤ .2 Note that the material payoff of the decision maker is 20 plus the gift, 

which is (weakly) greater than the material payoff that any other player can get in any state of 

the world. Thus, like an altruist, an inequality-averse decision maker always wants to increase 

the material payoffs of the other players.  

 

Proof of Proposition 1: We consider the three cases of the proposition in turn. Note that in all 

                                                 
1 Charness and Rabin (2002) consider the case where the decision maker maximizes a weighted sum of her own 
payoff, the sum of all payoffs, and the payoff of the worst off in the group. This is a convex combination of 
utilitarianism and maximin preferences. The extension of our results to this case is straightforward.  
2 An alternative formulation is that she wants her own payoff to be as close as possible to the average payoff of all 
players (Bolton and Ockenfels, 2000), i.e., )/,( j

j
DMDMDMDM mmmUU Σ=  with },,,{ CYXDMj ∈ and where 

0/ >∂∂ jDM mU  iff 4/1/ >Σ j
j

DM mm . This does not affect our results. 
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cases the decision maker cannot affect her own material payoff.  

(a) Baseline Treatment. DM’s payoff is always weakly greater than the realized payoff of the 

client. Her own monetary payoff is unaffected by her decision. Thus, all three outcome-based 

preference models predict that DM maximizes the payoff of the client.3  

(b) Gift Treatment, gift given: The distribution of material payoffs of the two producers is 

unaffected by DM’s choice. Thus, she favors the client as in (a). 

(c) Gift Treatment, gift not given: If producer X did not pass on the gift, DM can affect the payoff 

distribution of the producers. If she chooses product X the material payoffs of the producers 

are (17,0), if she chooses Y, they are (1,16). If she is utilitarian or inequality averse, she is 

indifferent between these two distributions – in the case of utilitarian preferences because the 

sum of payoffs is unaffected, in the case of inequality aversion because DM’s utility depends 

on the average difference between her payoff and the payoff of other players’ who are behind, 

regardless of the distribution among those players. Thus, she maximizes the payoff of the 

client. However, if she has maximin preferences, she favors producer Y because 

{ } { }20 min 20,1,16, ( ) 20 min 20,17,0, ( )

1 0,

C Cm Y m X+ > +

⇔ >
 

where 0)( >imC  is the client’s expected payoff if product },{ YXi∈  is chosen. Q.E.D. 

 

Proof of Proposition 2:  In a pooling equilibrium all producers choose the same strategy. Thus, on 

the equilibrium path DM does not learn anything about the type of the (potential) gift giver. If 

DM is kind, she maximizes the sum of payoffs since, in a pooling equilibrium, all other players 

have the same expected weight in her utility function. Hence, a kind DM favors the client. If DM 

is selfish, she is indifferent and, hence, also favors the client in equilibrium, as assumed in 

Section 4.  

For the proof of the second part of the proposition, let ggp denote the probability that DM 

chooses product X if the gift was given, and gngp the probability that DM chooses X if the gift 

was not given. A selfish producer X keeps the gift only if 

 1 16 16  .gng ggp p+ ⋅ ≥ ⋅  

Thus, any equilibrium in which the selfish type keeps the gift with positive probability must have 

                                                 
3 With altruistic and inequality averse preferences this prediction is unique. If DM has maximin preferences he is 
indifferent which product to choose. 
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pgg – pgng ≤ 1/16. Thus, if pgg – pgng > 1/16, producer X cannot signal that he is the kind type by 

giving the gift because the selfish type will mimic him.                         Q.E.D. 

 

Proof of Proposition 3: At stage 1 producer X chooses whether to send the gift (G) or not to send 

the gift (N). Then DM decides whether to choose X’s product (X) or the product that yields the 

highest expected payoff for the client (C). Since the role of the gift giver was randomly allocated, 

we maintain that the parties assign a probability of 50 percent to having the better product. The 

expected payoffs are given in the normal form of this sequential game: 

 

 

 

 

 

For players { }DMXi ,∈ , let ai denote player i’s strategy, bij player i’s belief about the strategy 

chosen by player j (first-order belief), and ciji player i’s belief what player j believes about i’s 

strategy (second-order belief), with j i≠ . Player i ’s expected utility is given by 

( , , ) ( , ) ( , ) ( , ).i i
i ij iji i ij i ij i ij iji ij ijiU a b c m a b n a b b cκ λ= + ⋅ ⋅  

The first term is i’s expected monetary payoff. The second term is i’s reciprocity payoff. Here, 

the parameter ni ≥ 0 reflects how much i cares about the perceived kindness of player j, 

),( ijiijiji cbλ . The kindness of player i  is given by the function 
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This is the payoff that player i “gives” to player j by choosing ai assuming that j chooses bij, 

minus the “equitable” payoff of j which is defined as the average of the maximum and the 

minimum payoff that player i can “give” to player j (assuming that j chooses bij): 
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The perceived kindness of player j is given by the function  

).(),(),( iji
i
eijiij

i
ijiijiji cmcbmcb

j
−=λ  

This is the payoff that player i believes that player j is giving to him minus the “equitable” payoff 

    DM 
   \ 
X 

XX XC CX CC 

G 16, 22 16, 22 8,22 8, 22 

N 17, 20 9, 20 17,20 9, 20 
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(average of maximum and minimum payoff) that player j can give to player i. Note that if player i 

expects j to give him less than the equitable payoff, j’s perceived kindness is negative, so i wants 

to give player j also less than the equitable payoff, and vice versa. A strategy profile a*= 

{ }DMXiia ,*)( ∈  is a sequential reciprocity equilibrium (SRE) if *ia  maximizes ),,( ijiiji
i cbaU  and if 

*ij jb a=  and *iji ic a= .4 

If X chooses G, then DM always gets 22. If X chooses N, then she always gets 20. The 

equitable payoff for DM, )( ,DMX
DM
e bm

X
, is 21. Thus, no matter what DM believes, if X chooses G, 

we have λDM, X, DM = 22 – 21 = 1 , i.e., DM perceives X’s intentions as “kind.” Similarly, if X 

chooses N, we have λDM, X, DM = 20 – 21 = -1, and DM perceives X’s intention as “unkind.” 

We now show that it is part of an SRE that X chooses G and DM chooses XC.  We know 

already that, if producer X chooses G, then DM must perceive this as kind, so DM wants to 

reciprocate and to choose a kind action as well. By choosing action X, DM gives producer X a 

payoff of 16; by choosing C, she gives producer X an expected payoff of 8. The equitable payoff 

is (16+8)/2=12.  Thus, by choosing X, DM gets UDM(X, G, XC) = 22 + nDM · (16-12) · (22-21) = 

22 + 4nDM; by choosing C, she obtains UDM(C, G, XC) = 22 + nDM · (8-12) · (22-21) = 22 - 4nDM. 

Hence, for any nDM > 0 choosing action X is optimal.  

Consider now producer X. He believes that DM chooses the strategy XC. Furthermore, he 

believes that DM believes that X chooses G. Thus, producer X believes that DM is kind, because 

she reacts with X to G and gives him a payoff of 16 rather than 8 ( 41216,, +=−=XDMXλ ). 

Therefore player X wants to be kind as well. If he passes on the gift, his utility is UX(G, XC, G) = 

16 + nX · (22-21) · (16-12) = 16 + 4nX. If he does not pass on the gift, he gets UX(N, XC, G) = 9 + 

nX · (20-21) · (16-12) = 9 - 4nX. Thus, for any nX > 0 choosing G is indeed optimal. 

Finally, we show that it is part of a SRE that X chooses N and DM chooses XC.  We know 

already that if X chooses N, then DM must perceive this as unkind, so DM wants to reciprocate 

and choose an unkind action as well. By choosing action C, DM gives X a payoff of 1+8=9; by 

choosing X, she gives X a payoff of 1+16=17. The equitable payoff is (17+9)/2=13.  Thus, by 

choosing C, DM gets UDM(C, N, XC) = 20 + nDM · (9-13) · (20-21) = 20 + 4nDM; by choosing X, 

she obtains UDM(X, N, XC) = 20 + nDM · (17-13) · (20-21) = 20 - 4nDM. Hence, for any nDM > 0 

choosing C is optimal. 

Consider now producer X. He believes that DM chooses the strategy XC. Furthermore, he 
                                                 
4 See Dufwenberg and Kirchsteiger (2004) for more details and a discussion of the notion of SRE. 
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believes that DM believes that X chooses N. Thus, X believes that DM is unkind, because she 

reacts with C to N and gives him a payoff of 9 rather than 17 ( 4139,, −=−=XDMXλ ). Therefore, 

player X wants to be unkind as well. If she does not pass on the gift, she gets UX(N, XC, N) = 9 + 

nX · (20-21) · (9-13) = 9 + 4nX. If she passes on the gift, she gets UX(G, XC, N) = 17 + nX · (22-21) 

· (9-13) = 17-4nX. Thus, if nX > 1, choosing N is indeed optimal. Q.E.D. 

 

Proof of Proposition 4: W.l.o.g. assume that, if DM is indifferent between X and Y and also mC(X) 

= mC(Y), then DM chooses X. Let ( ) ( )C Cm Y m X∆ = −  denote the disadvantage of product X 

relative to product Y (in terms of expected payoff to the client). 

(i) Suppose that producer X passed on the gift. If X is the weakly better product (Δ ≤ 0) DM 

clearly chooses X, both in the Gift Treatment (GT) and in the No Externality Treatment. If X is 

the worse product (Δ > 0) DM chooses X in GT if and only if 

 
22 0 16 ( ) 22 16 0 [ ( ) ]

16 16  1 .
16

C Ck m X k m X

k k
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+ ⋅ + ⋅ ⋅ + ⋅ > + ⋅ + ⋅ ⋅ + ⋅ + ∆
∆

⇔ ⋅ ⋅ > ⋅ + ⋅∆ ⇔ > +
 

And in the No Externality Treatment (NET), DM chooses X if and only if  

 
( ) 2 0 16 ( ) 2 16 0

16 16   1 .
16

DM DMm X k m X k

k k

α α α α

α α
α

+ + ⋅ + ⋅ ⋅ > + ∆ + + ⋅ + ⋅ ⋅
∆

⇔ ⋅ ⋅ > ⋅ + ∆ ⇔ > +
 

 Hence, if product X is strictly worse (Δ > 0), DM still chooses X for large enough k , and she is 

more likely to do so in GT than in NET since the k -threshold is lower: 
α16

1
16

1 ∆
+<

∆
+  for all 

0 < α < 1. 

(ii) Suppose now that producer X did not pass on the gift. Then, in the Gift Treatment (GT), DM 

chooses X if and only if 

 
20 17 0 ( ) 20 1 16 [ ( ) ]

16 16 1 ,
16

C Cl m X l m X

l l

α α α α α α

α α α

+ ⋅ ⋅ + ⋅ + ⋅ ≥ + ⋅ ⋅ + ⋅ + ⋅ + ∆
∆

⇔ ⋅ ≥ + ∆ ⇔ ≥ +
 

if X is the (weakly) better product (Δ ≤ 0). The inequality cannot hold if X is the worse product 

(Δ > 0) because 0 1l≤ ≤ . 

In the No Externality Treatment (NET), DM chooses X if and only if  
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( ) 17 0 ( ) 1 16
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if X is the (weakly) better product (Δ ≤ 0). Again, the inequality cannot hold if X is the worse 

product (Δ > 0). 

 If product X is weakly better than Y (Δ ≤ 0), then, with 0 1l≤ ≤ , the inequalities hold for large 

enough l  and, with 
α16

1
16

1 ∆
+≥

∆
+  for Δ ≤ 0, it is less likely to hold in the GT than in the NET. 

 

 

Q.E.D. 
 

Proposition 5. Consider decision makers with social preferences satisfying Assumption 

1. 

(i) Suppose that producer X did pass on the gift. If product X is (weakly) better than 

product Y, DM always chooses X in the GT and the IT. If product X is strictly worse, 

DM may still choose X, and she is most likely to do so in IT without profit sharing, 

less likely to do so in GT, and least likely to do so in IT with profit sharing. 

(ii) Suppose that producer X did not pass on the gift. If X is (weakly) worse than Y, DM 

always chooses Y in the GT and the IT. If X  is strictly better, DM may still choose Y, 

and she is most likely to do so in IT with profit sharing, less likely to do so in GT, and 

least likely to do so in IT without profit sharing.  

 

Proof of Proposition 5: W.l.o.g. assume that, if DM is indifferent between X and Y and if mC(X) = 

mC(Y), then DM chooses X. 

(i) Suppose that the client offered profit sharing and the producer X passed on the gift. Clearly, if 

X is at least weakly better than Y (i.e. Δ ≤ 0), then DM chooses X, which increases her own 

material payoff and is good for the gift giver and the client. If Δ > 0, DM chooses X if and only if 

 

22 0.1 ( ) 16 0 0.95 ( )
22 0.1 ( ( ) ) 0 16 0.95 ( ( ) )

16 0.1 16 0.95
(16 0.95 ) 16 0.1

16 0.1 0.95 0.11 .
16 0.95 16 0.95

C C

C C

m X k k m X
m X k k m X

k k
k

k

α α α

α α α
α α α
α α

α α
α α α α

+ ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅

> + ⋅ + ∆ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ + ∆
⇔ ⋅ ⋅ > ⋅∆ + ⋅ + ⋅ ⋅ ⋅∆
⇔ ⋅ ⋅ − ⋅∆ > + ∆

+ ⋅∆ +
⇔ > = + ∆

− ∆ − ∆

 

If the client has not offered profit sharing and the gift was given, DM still chooses X if X is at 
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least weakly better than Y. He also chooses X, if Δ > 0, if and only if 

 

22 16 0 ( ) 22 0 16 ( ( ) )
16 16

1 .
16

C Ck l m X k l m X
k l

k l

α α α α α α
α α α

+ ⋅ ⋅ + ⋅ + ⋅ ⋅ > + ⋅ ⋅ + ⋅ + ⋅ ⋅ + ∆
⇔ ⋅ ⋅ > ⋅ + ⋅ ⋅∆

∆
⇔ > + ⋅

 

Hence, if the gift was given and product X is weakly better (Δ ≤ 0), then DM will always choose 

X. If product X is strictly worse (Δ > 0), both inequalities still hold for large enough k , small 

enough Δ, small enough α, or small enough l . To see that DM is less likely to choose X in the IT 

with profit sharing than in the GT, we compare the thresholds for k : 

 

0.95 0.11 1
16 0.95 16

0.95 0.1 1
16 0.95 16
0.95 16 1.6 16 0.95
1.6 0.8 0.95 ,

α
α α

α
α α

α α α
α α

+ ∆
+ ∆ > +

− ∆
+

⇔ >
− ∆

⇔ ⋅ + > − ∆
⇔ > − ∆

 which always holds for Δ > 0. Since the threshold in the IT with profit-sharing is strictly larger, 

DM is less likely to choose X. 

Similarly, to see that she is more likely to choose X in the IT without profit-sharing than in the 

GT, we compare again thresholds and note that 1 1
16 16

l ∆ ∆
+ ⋅ ≤ + , with the inequality holding 

strictly for 1l < . 

(ii) Suppose now that producer X does not pass on the gift. Then DM clearly chooses Y in the IT 

if Y is at least weakly better than X, no matter whether profit sharing has been offered or not. If X 

is strictly better than Y (Δ < 0) and the client offered profit sharing, DM chooses X  if and only if  

20 0.1 ( ) 17 0 0.95 ( )
20 0.1 ( ( ) ) 1 16 0.95 ( ( ) )
16 0.1 16 0.95

0.95 0.11 .
16

C C

C C

m X l k m X
m X l k m X

l k
kl

α α α

α α α
α α α

α
α

+ ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅

> + ⋅ + ∆ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ + ∆
⇔ ⋅ > ∆ + + ⋅ ⋅ ∆

+
⇔ > + ∆

 

If Δ < 0 and the client has not offered profit sharing, DM chooses X if and only if 
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l
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Hence, if the gift was not given and product X is strictly worse (Δ > 0), then DM will never 

choose X. If instead product X is strictly better (Δ < 0), both inequalities hold for large enough l , 

large enough Δ, small enough α, or large enough k , and DM may choose X. To see that DM is 

more likely to choose X in the IT with profit-sharing than in the GT, we compare the thresholds 

for l :  

0.95 0.1 11 1
16 16

0.95 0.1 1

0.95 0.1 ,

k

k

k

α
α

α
α
α α

+
+ ∆ < + ∆

+
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which always holds for finite α. Since the threshold in the IT with profit-sharing is strictly 

smaller, DM is more likely to choose X.  

Similarly, she is less likely to do so in the IT without profit-sharing than in the GT since, for 

Δ < 0, 

 
2 2 2

16 16
16 16

16 16 .

+ ∆
>

−∆
⇔ > −∆         Q.E.D.
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Appendix B: Additional Tables 

Appendix-Table A1. Experimental Parameterization 

 
Period Poten-

tial 
gift 

giver 

Possible payoffs 
of product A 

Expec
ted 

value 
of A 

Spread 
btw. 

payoff
s of A 

Possible payoffs 
of product B 

Expec
ted 

value 
of B 

Spread 
btw. 

payoffs 
of B 

Diff. in 
EVs (pot. 
gift giver 

minus 
other) 

Diff. in 
Spreads 
(pot. gift 

giver minus 
other) 

  50% 50%   50% 50%     
1 A 13 15 14 2 20 12 16 8 -2 -6 
2 B 15 17 16 2 12 20 16 8 0 6 
3 B 16 14 15 2 14 20 17 6 2 4 
4 B 13 19 16 6 5 15 10 10 -6 4 
5 A 17 7 12 10 10 14 12 4 0 6 
6 B 12 16 14 4 19 13 16 6 2 2 
7 A 11 19 15 8 18 16 17 2 -2 6 
8 A 8 20 14 12 10 18 14 8 0 4 
9 B 17 19 18 2 10 14 12 4 -6 2 
10 A 19 13 16 6 20 8 14 12 2 -6 
11 B 20 12 16 8 7 13 10 6 -6 -2 
12 B 3 17 10 14 5 11 8 6 -2 -8 
13 A 16 12 14 4 8 20 14 12 0 -8 
14 A 9 15 12 6 19 5 12 14 0 -8 
15 B 19 11 15 8 7 19 13 12 -2 4 
16 A 8 12 10 4 13 3 8 10 2 -6 
17 B 20 16 18 4 16 8 12 8 -6 4 
18 A 7 13 10 6 16 8 12 8 -2 -2 
19 A 8 14 11 6 14 12 13 2 -2 4 
20 B 13 19 16 6 18 14 16 4 0 -2 
            

21 A 2 4 3 2 18 20 19 2 -16 0 
22 B 15 17 16 2 12 20 16 8 0 6 
23 A 2 2 2 0 17 19 18 2 -16 -2 
24 A 19 13 16 6 20 8 14 12 2 -6 
25 B 20 18 19 2 6 0 3 6 -16 4 
26 B 3 17 10 14 5 11 8 6 -2 -8 
27 A 1 3 2 2 17 19 18 2 -16 0 
28 B 12 16 14 4 19 13 16 6 2 2 
29 B 16 20 18 4 4 0 2 4 -16 0 
30 A 2 0 1 2 15 19 17 4 -16 -2 
            min  3 7 10 2 5 3 8 2 -6; -16 -8 

max  20 20 18 14 20 20 17 14 2 6 
avg excl 

LET 
 13.20 15.00 14.10 6.00 13.05 13.15 13.10 7.50 -1.40 -0.1 

avg incl 
LET 

 11.87 13.67 12.77 5.27 13.13 13.07 13.10 6.73 -4.07 -0.27 

 
TABLE A1: Payoffs of the different products in all treatments 

  
In the first 20 periods that we used in all treatments there are  

• four periods in which the potential gift giver’s expected value is 2 points higher (periods 
3, 6, 10, and 16) 
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• six periods in which there is no difference in expected value between producer A and 
producer B (periods 2, 5, 8, 13, 14, and 20) 

• six periods in which the potential gift giver’s expected value is 2 points lower (periods 1, 
7, 12, 15, 18, 19) 

• four periods in which the potential gift giver’s expected value is 6 points lower (periods 4, 
9, 11, 17) 

Note that in the four periods in which the potential gift giver’s expected value is 6 points lower, 
his lottery is first order stochastically dominated by the lottery of his competitor. 
Note further that there are 10 periods in which the spread between possible payoffs is higher for 
the product of the potential gift giver than for the alternative product, and 10 periods in which it 
is lower. Among the six periods with equal expected values, the spread is larger in three periods 
and lower in the other three periods.  
 
In the Large Externality Treatment (LET) 10 additional periods (periods 21 to 30) are played. In 
six of those the expected value of the potential gift giver’s product is 16 points lower. 
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OLS OLS OLS OLS OLS OLS OLS
(1) (2) (3) (4) (5) (6) (7)

Gift given 0.289*** 0.290*** 0.274***
(0.001) (0.001) (0.001)

Gift not given -0.151*** -0.152*** -0.138***
(0.010) (0.007) (0.008)

(Product X  has same EV)*(Gift given) 0.389*** 0.389*** 0.391*** 0.391***
(0.001) (0.001) (0.000) (0.000)

(Product X  has same EV)*(Gift not given) -0.203*** -0.204*** -0.211*** -0.211***
(0.006) (0.006) (0.006) (0.006)

(Product X  has higher EV [+2])*(Gift given) 0.051 0.053 0.043 0.043
(0.196) (0.228) (0.336) (0.337)

(Product X  has higher EV [+2])*(Gift not given) -0.345*** -0.349*** -0.335*** -0.335***
(0.078) (0.001) (0.002) (0.000)

(Product X  has lower EV [-2])*(Gift given) 0.366*** 0.367*** 0.373*** 0.373***
(0.001) (0.001) (0.000) (0.000)

(Product X  has lower EV [-2])*(Gift not given) -0.023 -0.024 -0.025 -0.025
(0.726) (0.683) (0.673) (0.673)

(Product X  has lower EV [-6])*(Gift given) 0.273*** 0.272*** 0.272*** 0.272***
(0.007) (0.010) (0.012) (0.008)

(Product X  has lower EV [-6])*(Gift not given) -0.0798* -0.0753* -0.0752* -0.0752*
(0.067) (0.048) (0.043) (0.043)

(Product X has lower EV[-16])*(Gift given) - -0.361***
(0.001)

(Product X has lower EV[-16])*(Gift not given) 0.106 -0.255**
0.000 (0.348)

Dummies for EV difference of -16 X
Dummies for all other EV differences X X X X
Controls for gender, major, and period X X X X X
Observations 1440 1440 1'440 1440 1560 1560 1560
(Pseudo) R-squared 0.128 0.131 0.371 0.373 0.119 0.382 0.382
Sample GT; BT GT; BT GT; BT GT; BT GT; LET; BT GT; LET; BT GT; LET; BT

Appendix -Table A3. Gift Treatment (Bootstrapped SES clustered by session)

Notes. The GT, BT, and LET samples contain all data from the Gift, Baseline, and Large Externality Treatment, respectively. The  Gift 
given indicates that producer X sent the gift if it was available. Gift not given indicates that producer X did not send the gift although it 
was available. P-values estimated using the wild cluster bootstrap t-procedure (clustering by session) are reported. *** denotes 
significance at 1 percent, ** at 5 percent, and * at 10 percent.
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Diff. to BT Diff. to GT Diff. to BT Diff. to GT

(1) (2) (3) (4)
NET: Gift given 0.187** -0.103   

(0.044) (0.125)
NET: Gift not given -0.068 0.084*    

(0.382) (0.059)
(Product X  has same EV)*(NET: Gift given) 0.325** -0.064       

(0.049) (0.186)
(Product X  has same EV)*(NET: Gift not given) -0.080 0.124        

(0.463) (0.198)
(Product X  has higher EV [+2])*(NET: Gift given) 0.115 0.062***        

(0.327) (0.186)
(Product X  has higher EV [+2])*(NET: Gift not given) -0.058 0.290***         

(0.476) (0.097)
(Product X  has lower EV [-2])*(NET: Gift given) 0.195 -0.171**        

(0.142) (0.122)
(Product X  has lower EV [-2])*(NET: Gift not given) -0.020 0.003         

(0.709) (0.981)
(Product X  has lower EV [-6])*(NET: Gift given) -0.063 -0.335***        

(0.247) (0.079)
(Product X  has lower EV [-6])*(NET: Gift not given) -0.103* -0.027         

(0.051) (0.364)
Dummies for (GT: Gift given) and (GT: Gift not given) X          
Dummies for (Gift given) and (Gift not given) X        
Dummies for EV differences X X    
Dummies for EV differences interacted with (GT: gg) and (GT: gng) X           
Dummies for EV differences interacted with (gg) and (gng) X         
Controls for gender, major, and period X X X X      
Sample NET, GT, BT NET, GT, BT NET, GT, BT NET, GT, BT
Observations 1'760 1'760 1'760 1'760
R-square 0.123 0.123 0.397 0.397

Appendix-Table A4. No Externality Treatment (Bootstrapped SES clustered by session)

                   
                    

                    
      

Notes.  The NET sample contains all observations from the No Externality Treatment; the BT sample all observations from 
the Baseline Treatment; and the GT sample all observations from the Gift Treatment. The abbreviations gg  and gng  indicate 
Gift given  and Gift not given , respectively. Constant included. P-values estimated using the wild cluster bootstrap t-
procedure (clustering by session) are reported. *** denotes significance at 1 percent, ** at 5 percent, and * at 10 percent.
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Diff. to BT Diff. to GT Diff. to BT Diff. to GT Diff. to BT Diff. to GT
(1) (2) (3) (4) (5) (6)

Model 1: Overall Effects
Respective Treatment: Gift given 0.241** -0.049 0.216** -0.074 0.09 -0.199***

(0.056) (0.634) (0.012) (0.159) (0.107) (0.009)
Respective Treatment: Gift not given -0.102 0.049 -0.076 0.077 -0.139 0.013

(0.107) (0.281) (0.122) (0.159) (0.159) (0.823)
Dummies for (GT: Gift given) and (GT: Gift not given) X X X
Dummies for (Gift given) and (Gift not given) X X X
Controls for gender, econ major, and period X X X X X X

R-square 0.128 0.128 0.123 0.123 0.120 0.120
Model 2: Estimates by EV differences

(Product X  has same EV)*(Treatment: Gift given) 0.291** -0.098 0.405** 0.016 0.170*** -0.219**
(0.027) (0.537) (0.021) (0.801) (0.006) (0.013)

(Product X  has same EV)*(Treatment: Gift not given) -0.222 -0.018 -0.231** -0.026 -0.183 0.021
(0.205) (0.805) (0.040) (0.629) (0.160) (0.804)

(Product X  has higher EV [+2])*(Treatment: Gift given) 0.075 0.022 0.072 0.019 0.092 0.040
(0.241) (0.643) (0.156) (0.625) (0.214) (0.234)

(Product X  has higher EV [+2])*(Treatment: Gift not given) -0.166 0.182 -0.095 0.255* -0.298 0.049
(0.157) (0.220) (0.245) (0.074) (0.119) (0.720)

(Product X  has lower EV [-2])*(Treatment: Gift given) 0.325 -0.042 0.369*** 0.003 0.13 -0.237**
(0.138) (0.841) (0.009) (0.989) (0.177) (0.020)

(Product X  has lower EV [-2])*(Treatment: Gift not given) -0.068 -0.045 0.046 0.070 -0.034 -0.011
(0.325) (0.478) (0.706) (0.712) (0.526) (0.863)

(Product X  has lower EV [-6])*(Treatment: Gift given) 0.297 0.024 -0.083* -0.355** -0.069 -0.342**
(0.139) (0.861) (0.044) (0.019) (0.279) (0.020)

(Product X  has lower EV [-6])*(Treatment: Gift not given) -0.112* -0.037 -0.116*** -0.040 -0.105* -0.028
(0.074) (0.223) (0.008) (0.119) (0.052) (0.452)

Dummies for EV differences X X X X X X
Dummies for EV differences interacted with (GT: gg) and (GT: gng) X X X
Dummies for EV differences interacted with (gg) and (gng) X X X
Controls for gender, major, and period X X X X X X

R-square 0.366 0.366 0.392 0.392 0.386 0.386
Sample GT2:2, GT, BT GT2:2, GT, BT GT2:1, GT, BT GT2:1, GT, BT HIRET; GT; BT HIRET; GT; BT
Observations 1'680 1'680 1'680 1'680 1'800 1'800

Appendix - Table A5. Gift Size and Efficiency of Gift (Bootstrapped SES clustered by session)

Welfare Neutral Gift (GT2:2) Inefficient Gift (GT2:1) Hiring Treatment (HIRET)

Notes . The HIRET sample contains all observations from the Hiring Treatment, GT2:1 and GT2:2 sample the observations from the  Gift Treatments with efficiency 2:1  
and 2:2, respectively; BT the observations from the Baseline Treatment; and GT the observations from the Gift Treatment. The abbreviations gg and gng indicate "gift 
available and given" and "gift available but not given," respectively. Constant included. P-values estimated using the wild cluster bootstrap t-procedure (clustering by 

session) are reported. *** denotes significance at 1 percent, ** at 5 percent, and * at 10 percent.
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Diff. to BT Diff. to GT Diff. to BT Diff. to GT Diff. to DCT Diff. to BT Diff. to GT Diff. to BT Diff. to GT Diff. to BT Diff. to GT
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Model 1: Overall Effects
Respective Treatment: Gift given 0.223*** -0.066 0.212** -0.077 -0.011 0.159* -0.130* 0.246** -0.044 0.388*** 0.098***

(0.010) (0.272) (0.037) (0.321) (0.880) (0.076) (0.099) (0.018) (0.688) (0.019) (0.089)
Respective Treatment: Gift not given -0.109 0.045 -0.087* 0.065* 0.019 -0.071 0.083 -0.052 0.100 -0.120** 0.031

(0.090) (0.360) (0.079) (0.056) (0.620) (0.905) (0.197) (0.992) (0.362) (0.104) (0.540)
Dummies for (GT: Gift given) and (GT: Gift not given) X X X X X X
Dummies for (Gift given) and (Gift not given) X X X X X X
Controls for gender, econ major, and period X X X X X X X X X X X

R-square 0.123 0.123 0.12 0.12 0.115 0.116 0.116 0.128 0.128 0.156 0.156
Model 2: Estimates by EV differences

(Product X  has same EV)*(Treatment: Gift given) 0.309** -0.080 0.289*** -0.100 -0.020 0.297* -0.092 0.393*** 0.004 0.371** -0.019
(0.016) (0.146) (0.004) (0.143) (0.747) (0.085) (0.170) (0.009) (0.953) (0.028) (0.886)

(Product X  has same EV)*(Treatment: Gift not given) -0.063 0.142 -0.191* 0.013 -0.130 -0.209 -0.003 -0.199 0.005 -0.191* 0.011
(0.273) (0.084) (0.070) (0.700) (0.650) (0.670) (0.967) (0.540) (0.960) (0.100) (0.881)

(Product X  has higher EV [+2])*(Treatment: Gift given) 0.102** 0.05 0.072 0.02 -0.029 -0.037 -0.090 0.063 0.010 0.069 0.016
(0.037) (0.135) (0.269) (0.639) (0.590) (0.517) (0.115) (0.230) (0.826) (0.137) (0.676)

(Product X  has higher EV [+2])*(Treatment: Gift not given) -0.191 0.158 -0.099 0.25 0.089 -0.155 0.197 -0.003 0.346** -0.733*** -0.387**
(0.091) (0.330) (0.368) (0.159) (0.538) (0.668) (0.419) (0.975) (0.048) (0.009) (0.035)

(Product X  has lower EV [-2])*(Treatment: Gift given) 0.289** -0.078 0.295* -0.072 0.006 0.199* -0.167* 0.223 -0.144 0.505*** 0.137**
(0.010) (0.405) (0.098) (0.662) (0.958) (0.077) (0.096) (0.164) (0.067) (0.005) (0.049)

(Product X  has lower EV [-2])*(Treatment: Gift not given) -0.074 -0.049 -0.068 -0.044 0.004 0.199 0.224 0.102 0.126 0.088 0.110
(0.198) (0.337) (0.460) (0.541) (0.939) (0.170) (0.464) (0.471) (0.270) (0.454) (0.210)

(Product X  has lower EV [-6])*(Treatment: Gift given) 0.07*** -0.202 0.157 -0.116 0.086 0.108 -0.163 0.015 -0.258 0.564** 0.290**
(0.428) (0.056) (0.159) (0.252) (0.431) (0.049) (0.143) (0.958) (0.178) (0.011) (0.018)

(Product X  has lower EV [-6])*(Treatment: Gift not given) -0.065 0.012 -0.107* -0.032 -0.044 -0.132 -0.056 -0.099 -0.023 0.270** 0.345***
(0.270) (0.819) (0.074) (0.216) (0.337) (0.350) (0.427) (0.349) (0.379) (0.024) (0.001)

Dummies for EV differences X X X X X X X X X X X
Dummies for EV differences interacted with (GT: gg) and (GT: gng) X X X X X X
.Dummies for EV differences interacted with (gg) and (gng) X X X X X X
Controls for gender, major, and period X X X X X X X X X X X

R-square 0.38 0.38 0.369 0.369 0.376 0.363 0.363 0.381 0.381 0.361 0.361

Sample DCT, GT, BT DCT, GT, BT DCPT, GT, BT DCPT, GT, BT CPT; DCT; GT; B LGT, GT, BT LGT, GT, BT IT-ps; GT; BT IT-ps; GT; BT IT-nps; GT; BT IT-nps; GT; BT
Observations 1'800 1'800 1'800 1'800 2,160 1'680 1'680 1'571 1'571 1'769 1'769
Notes. The DCT, DCPT, and LGT samples contain all data from the Disclosure, Disclosure with Punishment, and Large Gift Treatment, respectively. The data from the Incentive Treatment are split into IT-ps (when the client 
offered profit sharing) and IT-nps (when the client did not offer profit sharing). BT contains the observations from the Baseline Treatment; and GT the observations from the Gift Treatment. The abbreviations gg and gng indicate 
"gift available and given" and "gift available but not given," respectively. Constant included. P-values estimated using the wild cluster bootstrap t-procedure (clustering by session) are reported. *** denotes significance at 1 
percent, ** at 5 percent, and * at 10 percent.

Incentive-nps (IT-nps)Incentive-ps (IT-ps)

Appendix - Table A6. Policy Treatments (Bootstrapped SES clustered by session)

Large  Gift (LGT)Disclosure w. Punishm. (DCPT)Disclosure (DCT)



16 
 

 

Diff. to BT Diff. to GT Diff. to DCPT Diff. to BT Diff. to GT Diff. to BT Diff. to GT
(1) (2) (3) (4) (5) (6) (7)

Model 1: Overall Effects
Respective Treatment: Gift given 0.381*** 0.091** 0.169*** 0.105** -0.185*** 0.244*** -0.046

(0.041) (0.039) (0.046) (0.047) (0.046) (0.042) (0.040)
Respective Treatment: Gift not given -0.105** 0.047 -0.018 -0.131*** 0.022 0.032 0.185***

(0.053) (0.054) (0.067) (0.049) (0.051) (0.068) (0.069)
Dummies for (GT: Gift given) and (GT: Gift not given) X X X X
Dummies for (Gift given) and (Gift not given) X X X X
Controls for gender, econ major, and period X X X X X X X

R-square 0.148 0.148 0.135 0.122
Model 2: Estimates by EV differences

(Product X  has same EV)*(Treatment: Gift given) 0.465*** 0.075 0.175*** 0.217*** -0.172** 0.389*** -0.000
(0.060) (0.051) (0.067) (0.080) (0.074) (0.065) (0.057)

(Product X  has same EV)*(Treatment: Gift not given) -0.245*** -0.041 -0.053 -0.206** -0.002 -0.075 0.130
(0.091) (0.093) (0.116) (0.096) (0.099) (0.129) (0.131)

(Product X  has higher EV [+2])*(Treatment: Gift given) 0.117*** 0.064*** 0.046 0.083* 0.030 -0.008 -0.061
(0.033) (0.022) (0.029) (0.045) (0.037) (0.066) (0.061)

(Product X  has higher EV [+2])*(Treatment: Gift not given) -0.195 0.155 -0.098 0.032 0.381*** -0.016 0.335***
(0.123) (0.138) (0.147) (0.073) (0.096) (0.098) (0.116)

(Product X  has lower EV [-2])*(Treatment: Gift given) 0.495*** 0.128* 0.200** -0.008 -0.374*** 0.300*** -0.067
(0.072) (0.076) (0.087) (0.054) (0.059) (0.068) (0.072)

(Product X  has lower EV [-2])*(Treatment: Gift not given) 0.047 0.071 0.116 -0.085** -0.061 0.064 0.088
(0.085) (0.086) (0.091) (0.042) (0.044) (0.103) (0.103)

(Product X  has lower EV [-6])*(Treatment: Gift given) 0.325*** 0.053 0.169 -0.031 -0.303*** 0.165** -0.106
(0.101) (0.104) (0.113) (0.064) (0.068) (0.084) (0.087)

(Product X  has lower EV [-6])*(Treatment: Gift not given) -0.015 0.059 0.093 -0.066 0.010 0.104 0.177*
(0.069) (0.066) (0.062) (0.053) (0.050) (0.105) (0.103)

Dummies for EV differences X X X X X X X
Dummies for EV differences interacted with (GT: gg) and (GT: gng) X X X X
.Dummies for EV differences interacted with (gg) and (gng) X X X X
Controls for gender, major, and period X X X X X X X

R-square 0.381 0.381 0.376 0.402 0.402 0.367 0.367

Sample DCPT-PI, GT, BT DCPT-PI, GT, BT
DCPT; DCPT-PI; 

GT; BT ICT; GT; BT ICT; GT; BT SIT; GT; BT SIT; GT; BT

Observations 1'680 1'680 2,040 1,680 1,680 1,680 1,680

DCPT-PI SITICT

Appendix - Table A7. Additional Treatments

Notes . The DCPT and DCPT-PI samples contain the observations from the Disclosure With Punishment Treatment, and the Disclosure With Punishment And Partial 
Information Treatment, respectively. The BT and GT samples contain the observations from the Baseline Treatment, and the Gift Treatment, respectively. The SIT and ICT 
samples contain the observations from the Small Incentive Treatment and the "ICT"-Incentive Treatment, respectively. The abbreviations gg and gng indicate "gift available 
and given" and "gift available but not given," respectively. Constant included. Robust standard errors are reported.  *** denotes significance at 1 percent, ** at 5 percent, 
and * at 10 percent.
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Appendix C: The Wild Cluster Bootstrap-T  
 
A common concern in the analysis of experimental data is the possibility that observations may 

be correlated within session, due to day effects, (time-varying) experimenter effects, or other 

unobserved factors. One way to address this concern is to allow the error term to be clustered by 

session. However, in our experiment setting, we have only 31 sessions. Standard asymptotic tests 

tend to over-reject if the number of clusters (i.e., sessions) is small. We implement the wild 

cluster bootstrap-t procedure, first proposed by Cameron, Gelbach, and Miller (2008) to correct 

standard errors in estimations with few clusters. We cluster by both session and subject.  

The general bootstrap method, as introduced by B. Efron (1979), works by generating 

pseudo-samples from an original sample and calculating a statistic of interest within each pseudo-

sample, and then using the distribution of the statistic of interest to infer the distribution of the 

original sample statistic.  

There are many ways to generate pseudo-samples and therefore there exists a wide variety 

of bootstrap methods. In order for a bootstrap method to be applicable, the resampling method 

chosen should reflect the original data generating process (DGP) as closely as possible. Wu 

(1986) first suggested using a bootstrap method known as the wild bootstrap in order to deal with 

cases with heteroskedastic errors. Liu (1988) and Mammen (1993) provide theoretical 

justification for using the wild bootstrap in cases with heteroskedastic errors. Cameron, Miller, 

and Gelbach (2008) extend the wild bootstrap procedure to cases with clusters. They show that 

their wild cluster bootstrap-t procedure works well even with few clusters (as few as 5). Their 

basic argument for using certain bootstrap methods over others when the number of clusters is 

small is as follows. They propose that the key in these cases is to bootstrap an asymptotically 

pivotal statistic, meaning a statistic whose asymptotic distribution does not rely on unknown 

parameters. This leads to asymptotic refinement, i.e., the distribution of the test statistic 

converges faster to the true distribution than test statistics based on conventional asymptotic 

theory. 

Cameron, Miller, and Gelbach (2008) suggest the asymptotically pivotal Wald statistic 

𝑤 =  𝛽1
�−𝛽10

𝑠𝛽1�
 where 𝑠𝛽1�  is the standard error of 𝛽1� and 𝐻𝑜: 𝛽1 = 𝛽10and 𝐻𝑎: 𝛽1 ≠ 𝛽10. Theoretically, 

we may use a variety of bootstrap methods in order to provide bootstrap estimates of the Wald 
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statistic. Cameron, Miller, and Gelbach (2008) find that the wild cluster bootstrap-t procedure 

performs particularly well in practice. 

Below, we show the wild cluster bootstrap-t procedure implemented to bootstrap the 

Wald statistic for the coefficient on giving a gift. We are comparing behavior in the Gift 

Treatment and in the Baseline Treatment. The procedures for different treatments and for the 

Wald statistic when the gift was not given are completely analogous. 

1. In original sample, estimate the model  

𝑌𝑖 =  𝛽0 + 𝛽𝑔𝑖𝑔𝑔 ∗ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖 + 𝛽𝑁𝑜𝑔𝑖𝑔𝑔 ∗ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖 +  𝑢𝑖 

Form Wald statistic for 𝐻𝑜: 𝛽𝑔𝑖𝑔𝑔 = 0 

𝑤 =
𝛽𝑔𝑔𝑔𝑔�

𝑠𝛽𝑔𝑔𝑔𝑔�
 

where 𝑠𝛽𝑔𝑔𝑔𝑔� is obtained using the cluster-robust variance estimator. In STATA this is 

obtained using the cluster option. 

2. Estimate the restricted model 𝑌𝑖 =  𝛽0 +  𝑢𝑖. Obtain the restricted model 𝛽0
𝑅�  and the 

associated residuals {𝑢1𝑅 ,� … , 𝑢𝐺𝑅} � where 𝑢𝑔𝑅� is the vector of residuals obtained from 

cluster g. Note that existing literature on bootstrap methods advocate the use of bootstrap 

resampling methods that impose the null hypothesis. Therefore, in all of the reported 

results, we use a bootstrap method which imposes the null hypothesis. Also, had we 

included demographic controls as regressors (which we do in other cases) our restricted 

model would have included terms for these controls. We restrict only the coefficients of 

interest (gift given and gift not given). One may perform the restricted OLS estimation by 

restricting both coefficients on the statistics of interest simultaneously, or each 

individually. We perform both procedures. 

3. Do B iterations of the next step. On the 𝑏𝑔ℎiteration: 

a. form a pseudo sample of G clusters (𝑌1∗�,𝑋1), … , (𝑌𝐺∗�,𝑋𝐺) by the following method: For 

each cluster g = 1,…,G, form either  𝑢𝑔
𝑅∗� =𝑎𝑔𝑢𝑔𝑅� , where 𝑎𝑔 = 1 with probability 0.5 

and 𝑎𝑔 = −1with probability 0.5. Note that when using weights of this form, the 

maximum possible unique resamples is equal to 2𝐺 . In many cases we have as few as 

five clusters, resulting in 32 unique resamples. Webb (2012) argues that inference can 

be improved by adding points to the weighting distribution. He proposes a six-point 
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weighting distribution and provides Monte Carlo evidence to support using such a 

distribution. When we implement the wild cluster bootstrap-t procedure using a six-

point weighting distribution, the results did not change significantly.  

b. Form  𝑌𝑔∗� = 𝛽0
𝑅� + 𝑢𝑔

𝑅∗� . If other regressors such as demographic controls were included 

then the bootstrap sample would be formed by also adding the additional regressors 

multiplied by the estimates of their coefficients in the restricted regression. 

c. Calculate the Wald test statistic 𝑤𝑏
∗ = 𝛽𝑔𝑔𝑔𝑔,𝑏

𝑅�

𝑠𝛽𝑔𝑔𝑔𝑔,𝑏
∗�

, where 𝛽𝑔𝑔𝑔𝑔,𝑏
𝑅� and its standard error 

𝑠𝛽𝑔𝑔𝑔𝑔,𝑏
∗� are obtained from the unrestricted OLS estimation using the 𝑏𝑔ℎ pseudo-sample, 

with 𝑠𝛽𝑔𝑔𝑔𝑔,𝑏
∗� calculated using cluster-robust standard errors.  

4. The p-value is calculated by: 

𝑝∗(𝑤) = 2 ∗ min�
1
𝐵
�𝐼(
𝐵

𝑏=1

𝑤𝑏
∗ > 𝑤),

1
𝐵
�𝐼(
𝐵

𝑏=1

𝑤𝑏
∗ ≤ 𝑤) � 

where I(.) is the indicator function.  

As an illustrative example, we will present a discussion of the original wild bootstrap procedure, 

taken from Liu (1988). The following displays how the wild bootstrap can be used for accurate 

estimation in cases with heteroskedasticity. This original wild bootstrap does not take into 

account clustering, but the extension to clusters does not greatly alter the procedure. Therefore, 

going through the relatively simple example of Liu (1988) allows for a better understanding of 

why the procedure developed in Cameron, Miller, and Gelbach (2008) provides consistent 

estimates of the Wald statistic when allowing for clustered errors. Liu (1988) focuses on a simple 

regression of the form 𝑌𝑖 = 𝛽𝑥𝑖 + 𝜀𝑖, where 𝑥𝑖′𝑠 are nonzero real numbers, 𝐸(𝜀𝑖) = 0, 𝑉𝑎𝑉(𝐺𝑖) =

𝜎𝑖2, and 𝐺𝑖’s are independent. The least squares estimate of 𝛽 is �̂� =  ∑ 𝑥𝑖𝑌𝑖𝑛
𝑖=1
∑ 𝑥𝑗

2𝑛
𝑗=1

. Therefore, in this 

simple case with one regressor and no constant, 𝑉𝑎𝑉��̂�� = 𝑛−1 ∑ 𝑥𝑖
2𝜎𝑖

2𝑛
𝑖=1

(∑ 𝑥𝑗
2𝑛

𝑗=1 )2
. Let 𝑢𝑖 = 𝑌𝑖 − 𝑥𝑖�̂� be the 

residuals. If one employed a traditional residual bootstrap, then the bootstrap sample would be 

𝑌𝑖∗ = 𝑥𝑖�̂� + 𝑢𝑖∗ where 𝑢1∗, … ,𝑢𝑛∗  is a random sample drawn from the empirical d.f based on 

(𝑢1 − 𝑢𝑛���), … , (𝑢𝑛 − 𝑢𝑛���). Let 𝛽𝑏� denote the least squares estimate based on the bootstrap sample. 

Then the bootstrap variance is 𝑉𝑎𝑉�𝛽𝑏�� = 𝑛−1 ∑ (𝑢1−𝑢𝑛����)2𝑛
𝑖=1

(∑ 𝑥𝑗
2𝑛

𝑗=1 )2
 which is equivalent to 
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𝑛−1 ∑ 𝜎𝑖
2𝑛

𝑖=1
(∑ 𝑥𝑗

2𝑛
𝑗=1 )2

 asymptotically. Therefore, this bootstrap procedure does not result in a consistent 

estimate of the standard error of �̂� if the error variances are allowed to vary. It is easy to alter the 

bootstrap procedure in order to achieve a consistent estimate. Instead of drawing a bootstrap 

sample of residuals from the empirical d.f based on {(𝑢𝑖 − 𝑢𝑛���)}, draw the bootstrap from the 

empirical distribution based on {(𝑥𝑖/(𝑥𝑛2)������12(𝑢𝑖 − 𝑢𝑛���)}, where (𝑥𝑛2)������ = 1
2
∑ 𝑥𝑖2𝑛
𝑖=1  and let 𝛽𝑏� denote 

the resulting bootstrap least squares estimator of �̂�. Now,  

𝑉𝑎𝑉�𝛽𝑏�� =  ∑ 𝑥𝑖
2𝑢𝑖

2𝑛
𝑖=1

(∑ 𝑥𝑗
2𝑛

𝑗=1 )2
−  𝑛

−1 ∑ (𝑥𝑖𝑢𝑖)2𝑛
𝑖=1

(∑ 𝑥𝑗
2𝑛

𝑗=1 )2
 

Which is asymptotically equal to  

∑ 𝑥𝑖2𝜎𝑖2𝑛
𝑖=1

(∑ 𝑥𝑗2𝑛
𝑗=1 )2

+ 𝑂𝑝(𝐺−
3
2) 

So when we draw our bootstrap residuals from the empirical d.f. described above, we get a 

consistent estimate of the standard error for �̂�. 

In order to implement a bootstrap procedure which results in drawing from the desired empirical 

d.f, Liu (1988) asserts that the bootstrap sample should be 

𝑌1∗, … ,𝑌𝑛∗ where 𝑌𝑖∗ = 𝑥𝑖�̂� + 𝐺𝑖𝑢𝑖 with 𝐸(𝐺𝑖) = 0 and 𝑉𝑎𝑉(𝐺𝑖) = 1. 

There are many options for 𝐺𝑖. Davidson and Flachaire (2001) provide theoretical justification 

and Monte Carlo evidence favoring Rademacher weights. Rademacher weights are such that 

𝐺𝑖 = 1 with 𝑝 = 1
2
 and 𝐺𝑖 = −1 with 𝑝 = 1

2
. In all of our reported bootstrap results, we use the 

Rademacher weights. However, in unreported results, we implemented the bootstrap procedure 

using the six-point distribution suggested in Webb (2012). The results are similar. Davidson and 

Flachaire (2001) provide justification for using the residuals and coefficients from a restricted 

OLS estimation, and therefore the bootstrap sample in the procedure defined above is 

𝑌𝑔∗� = 𝛽0
𝑅� + 𝑢𝑔

𝑅∗� . 
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